TOPOLOGICAL PROPERTIES OF GRAPHICAL ARRANGEMENTS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Complexity of Graphic Arrangements

By combining Yuzvinsky’s criteria from [13] with tools from graph theory, we obtain an explicit combinatorial condition on a finite graph G which guarantees that the higher topological complexity TCs of the complement of the associated graphic arrangement AG is equal to the dimensional upper bound sr − 1, where r is the rank of AG.

متن کامل

Supersolvability and Freeness for ψ-Graphical Arrangements

Let G be a simple graph on the vertex set {v1, . . . , vn} with edge set E. Let K be a field. The graphical arrangement AG in K n is the arrangement xi − xj = 0, vivj ∈ E. An arrangement A is supersolvable if the intersection lattice L(c(A)) of the cone c(A) contains a maximal chain of modular elements. The second author has shown that a graphical arrangement AG is supersolvable if and only if ...

متن کامل

Topological Criteria for k - formal Arrangements ∗ Stefan

We prove a criterion for k-formality of arrangements, using a complex constructed from vector spaces introduced in [2]. As an application, we give a simple description of k-formality of graphic arrangements: Let G be a connected graph with no loops or multiple edges. Let ∆ be the flag (clique) complex of G and let H•(∆) be the homology of the chain complex of ∆. If AG is the graphic arrangement...

متن کامل

TOPOLOGICAL CRITERIA FOR k−FORMAL ARRANGEMENTS

We prove a criterion for k−formality of arrangements, using a complex constructed from vector spaces introduced in [2]. As an application, we give a simple description of k−formality of graphic arrangements: Let G be a connected graph with no loops or multiple edges. Let ∆ be the flag (clique) complex of G and let H•(∆) be the homology of the chain complex of ∆. If AG is the graphic arrangement...

متن کامل

Topological Invariance of Intersection Lattices of Arrangements in Cp2

Let s/* = {l\,li, ■■■ , ln} be a line arrangement in CP2 , i.e., a collection of distinct lines in CP2 . Let L(s/ * ) be the set of all intersections of elements of A* partially ordered byX<Y&YCX.Let M{tf*) be CP2 U-af* where \Jsf* = lj{'i: !<'<"}• The central problem of the theory of arrangement of lines in CP2 is the relationship between M{stf * ) and L{s/*). Main Theorem. The topological typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2014

ISSN: 1225-293X

DOI: 10.5831/hmj.2014.36.2.435